Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(2): 441-462, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672044

RESUMO

Mountain birch forests (Betula pubescens Ehrh. ssp. czerepanovii) at the subarctic treeline not only benefit from global warming, but are also increasingly affected by caterpillar outbreaks from foliage-feeding geometrid moths. Both of these factors have unknown consequences on soil organic carbon (SOC) stocks and biogeochemical cycles. We measured SOC stocks down to the bedrock under living trees and under two stages of dead trees (12 and 55 years since moth outbreak) and treeless tundra in northern Finland. We also measured in-situ soil respiration, potential SOC decomposability, biological (enzyme activities and microbial biomass), and chemical (N, mineral N, and pH) soil properties. SOC stocks were significantly higher under living trees (4.1 ± 2.1 kg m²) than in the treeless tundra (2.4 ± 0.6 kg m²), and remained at an elevated level even 12 (3.7 ± 1.7 kg m²) and 55 years (4.9 ± 3.0 kg m²) after tree death. Effects of tree status on SOC stocks decreased with increasing distance from the tree and with increasing depth, that is, a significant effect of tree status was found in the organic layer, but not in mineral soil. Soil under living trees was characterized by higher mineral N contents, microbial biomass, microbial activity, and soil respiration compared with the treeless tundra; soils under dead trees were intermediate between these two. The results suggest accelerated organic matter turnover under living trees but a positive net effect on SOC stocks. Slowed organic matter turnover and continuous supply of deadwood may explain why SOC stocks remained elevated under dead trees, despite the heavy decrease in aboveground C stocks. We conclude that the increased occurrence of moth damage with climate change would have minor effects on SOC stocks, but ultimately decrease ecosystem C stocks (49% within 55 years in this area), if the mountain birch forests will not be able to recover from the outbreaks.


Assuntos
Mariposas , Árvores , Animais , Betula , Carbono , Surtos de Doenças , Ecossistema , Solo
2.
PeerJ ; 7: e7330, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346502

RESUMO

The effect of reindeer Rangifer tarandus L. grazing on the ground-dwelling spider assemblage in Northern Finland was studied. Changes in species richness, abundance and evenness of spider assemblages were analyzed in relation to changes in vegetation and environmental factors in long term grazed and ungrazed sites as well as sites that had recently switched from grazed to ungrazed and vice versa. Grazing was found to have a significant impact on height and biomass of lichens and other ground vegetation. However, it seemed not to have an impact on the total abundance of spiders. This is likely caused by opposing family and species level responses of spiders to the grazing regime. Lycosid numbers were highest in grazed and linyphiid numbers in ungrazed areas. Lycosidae species richness was highest in ungrazed areas whereas Linyphiidae richness showed no response to grazing. Four Linyphiidae, one Thomisidae and one Lycosidae species showed strong preference for specific treatments. Sites that had recovered from grazing for nine years and the sites that were grazed for the last nine years but were previously ungrazed resembled the long term grazed sites. The results emphasize the importance of reindeer as a modifier of boreal forest ecosystems but the impact of reindeer grazing on spiders seems to be family and species specific. The sites with reversed grazing treatment demonstrate that recovery from strong grazing pressure at these high latitudes is a slow process whereas reindeer can rapidly change the conditions in previously ungrazed sites similar to long term heavily grazed conditions.

3.
Ecol Evol ; 7(12): 4507-4517, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28649360

RESUMO

Global warming has been commonly accepted to facilitate species' range shifts across latitudes. Cross-latitudinal transplantations support this; many tree species can well adapt to new geographical areas. However, these studies fail to capture species' adaptations to new light environment because the experiments were not designed to explicitly separate species' responses to light and temperature. Here we tested reaction norms of tree seedlings in reciprocal transplantations 1,000 km apart from each other at two latitudes (60°N and 69°N). In contrast to past studies, we exposed our experimental plants to same temperature in both sites (temperature of 60°N growing site is recorded to adjust temperature of 69°N site in real time via Internet connection) while light environment (photoperiod, light quality) remained ambient. Shoot elongation and autumn coloration were studied in seedlings of two deciduous trees (Betula pendula and Sorbus aucuparia), which were expected to respond differently to day length. Sorbus as a member of Rosaceae family was assumed to be indifferent to photoperiod, while Betula responds strongly to day length. We hypothesized that (1) southern and northern populations of both species perform differently; (2) southern populations perform better in both sites; (3) autumn phenology of southern populations may delay in the northern site; (4) and Sorbus aucuparia is less dependent on light environment. According to the hypotheses, shoot elongation of northern population was inherently low in both species. An evolutionary consequence of this may be a competitive success of southern populations under warming climate. Southern population of B. pendula was delayed in autumn coloration, but not in growth cessation. Sorbus aucuparia was less responsive to light environment. The results suggest that light provides selection pressure in range shifts, but the response is species dependent.

4.
J Chem Ecol ; 38(10): 1225-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23143636

RESUMO

We have addressed the impact of moose (Alces alces L.) on accumulation of secondary metabolites, lignin, and nitrogen in bilberry (Vaccinium myrtillus L.) along gradients of habitat productivity and solar radiation. The study was conducted within a long-term research project on direct and indirect impacts of moose on the ecosystem. In the experiment, browsing, defecation, and urination corresponding to four different moose densities were simulated for eight years before bilberry tissue was collected and analyzed. Some quantitatively dominant flavonoids were affected by the simulated moose browsing and by habitat productivity and light. The content of flavonoids increased with increasing moose density and light, and decreased with increasing habitat productivity. The higher concentration of secondary metabolites in bilberry from nutrient-poor sites may have resulted from the increased photosynthesis relative to growth, which facilitated secondary metabolism. The higher concentration of secondary metabolites in plants subjected to simulated moose- herbivory might have been caused in part by loss of biomass. In addition, in areas with high biomass loss, i.e., high moose density, a more open canopy was created and more solar radiation could have induced secondary metabolism.


Assuntos
Cervos/fisiologia , Ecossistema , Herbivoria , Vaccinium myrtillus/metabolismo , Análise de Variância , Animais , Comportamento Alimentar , Folhas de Planta/metabolismo , Brotos de Planta/metabolismo , Densidade Demográfica , Análise de Componente Principal , Luz Solar , Suécia
5.
Sci Total Environ ; 408(19): 4165-9, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20542535

RESUMO

Passerine birds need extra calcium during their breeding for developing egg shells and proper growth of nestling skeleton. Land snails are an important calcium source for many passerines and human-induced changes in snail populations may pose a severe problem for breeding birds. We studied from the bird's viewpoint how air pollution affects the shell mass, abundance and diversity of land snail communities along a pollution gradient of a copper smelter. We sampled remnant snail shells from the nests of an insectivorous passerine, the pied flycatcher, Ficedula hypoleuca, to find out how the availability of land snails varies along the pollution gradient. The total snail shell mass increased towards the pollution source but declined abruptly in the vicinity of the smelter. This spatial variation in shell mass was evident also within a single snail species and could not be wholly explained by spatially varying snail numbers or species composition. Instead, the total shell mass was related to their shell size, individuals being largest at the moderately polluted areas. Smaller shell size suggests inferior growth of snails in the most heavily polluted area. Our study shows that pollution affects the diversity, abundance (available shell mass) and individual quality of land snails, posing reproductive problems for birds that rely on snails as calcium sources during breeding. There are probably both direct pollution-related (heavy metal and calcium levels) and indirect (habitat change) effects behind the observed changes in snail populations.


Assuntos
Poluentes Atmosféricos/toxicidade , Passeriformes/crescimento & desenvolvimento , Caramujos/crescimento & desenvolvimento , Animais , Cálcio/metabolismo , Dieta , Monitoramento Ambiental , Caramujos/efeitos dos fármacos , Caramujos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...